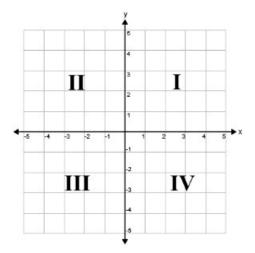


Mr. Wright's Math Extravaganza

Precalculus Functions and Graphs

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: 80% on test and success on applications Score I Can Statements


4.0	I can demonstrate in-depth inferences and applications that go beyond what was taught.			
3.5	In addition to score 3.0 performance, partial success at score 4.0 content.			
3.0	I can find and interpret rate-of-change of functions.			
	I can graph functions.			
2.5	No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content.			
	I can use the Cartesian coordinate system. (Graphing, distance, and midpoint)			
	\Box I can graph equations and find x- and y- intercepts.			
	I can write and graph linear functions.			
	I can find the domain and range of a function.			
	I can evaluate and graph piecewise functions.			
2.0	 I can find the zeros and rate of change of a graph. 			
	 I can identify the graphs of parent functions. 			
	I can graph using transformations.			
	□ I can combine functions (+, -, \times , ÷, composition)			
	I can find the inverse of a function.			
	Find the best-fitting line for linear data.			
1.5	Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.			
1.0	With help, partial success at score 2.0 content and score 3.0 content.			
0.5	With help, partial success at score 2.0 content but not at score 3.0 content.			
0.0	Even with help, no success.			

1-01 The Cartesian Plane

Cartesian Plane

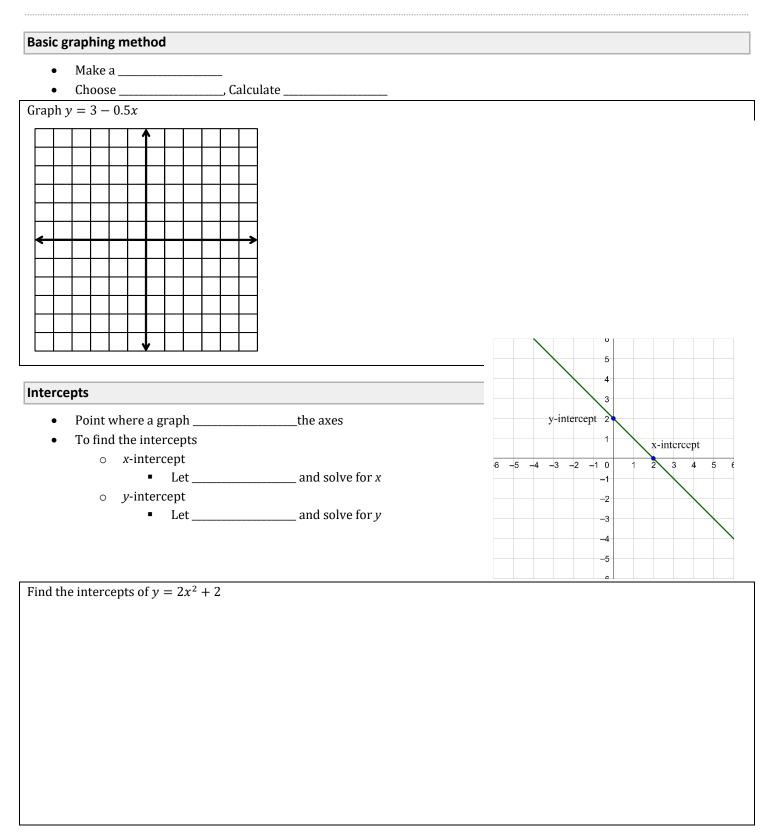
- ____quadrants •
- Point is ____

Graph A(3, 2) Graph B(-1, 4)

Distance formula

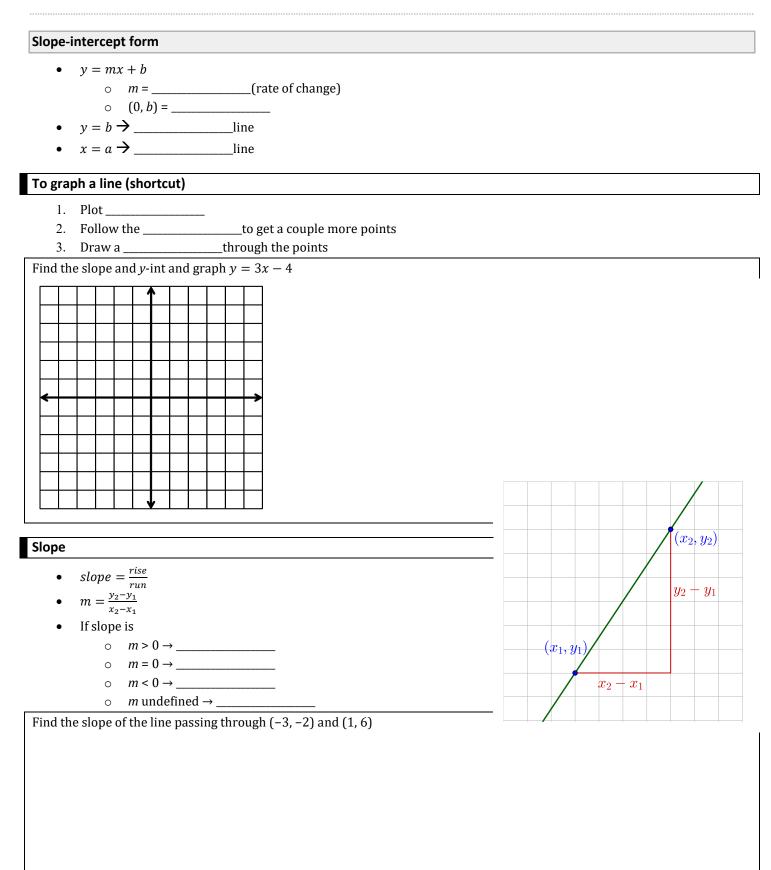
- Theorem $a^2 + b^2 = c^2$
- $(x_2 x_1)^2 + (y_2 y_1)^2 = d^2$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$


Midpoint formula

_____of the points (mean)

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$


Find the (a) distance and (b) midpoint between (-1, 3) and (2, -5)

1-02 Graphs

Precalculus 1-02	Name:			
Circles				
• $(x-h)^2 + (y-k)^2 = r^2$				
• where is the center				
ois the	radius			
Graph $(x + 2)^2 + (y - 1)^2 = 4$				
<				

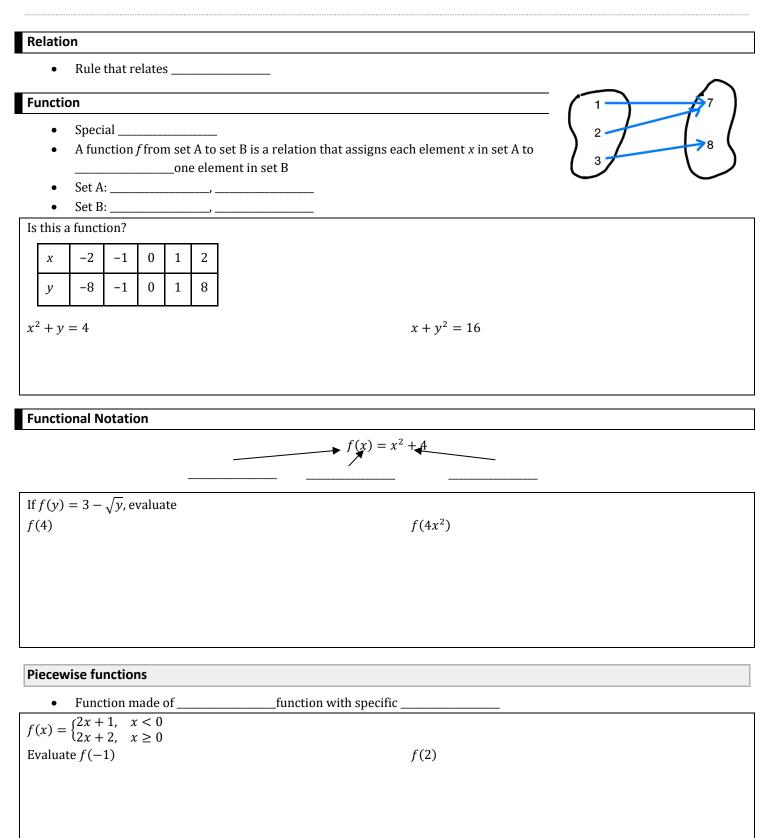
1-03 Linear Equations in Two Variables

Write Linear Equations

- 1. Find _____(*m*)
- 2. Find a ______ on the line (*x*₁, *y*₁)

3. Use ______form $y - y_1 = m(x - x_1)$

Find slope-intercept form of the line passing through (2, 4) with m = 3.


Parallel and Perpendicular

٠

- Parallel \rightarrow _____slope
 - Perpendicular \rightarrow slopes are _____
 - $\circ \quad m_1 \cdot m_2 = -1$

Find the equation of the line passing through (2, 1) and perpendicular to 4x - 2y = 3.

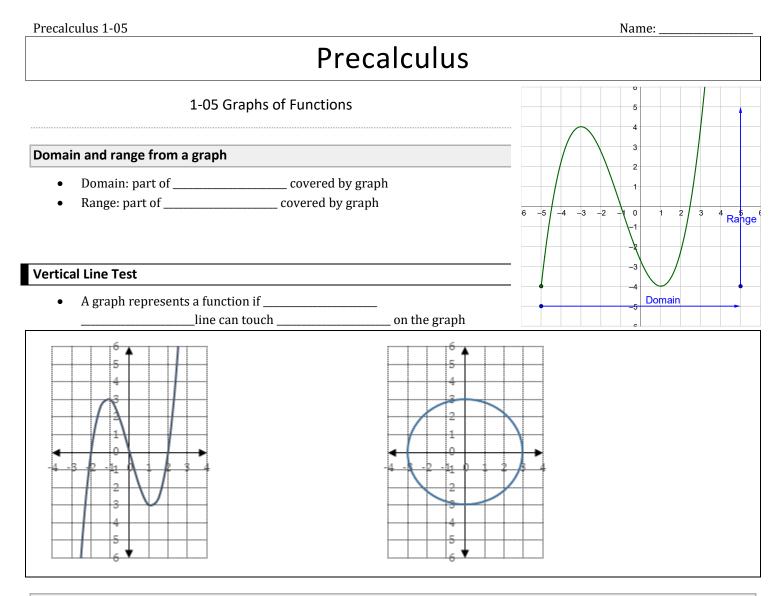
1-04 Functions and Functional Notation

Implied domain - all real numbers for which the expression is ______

Interval notation

- [] means _____
- () means _____
- (2, 7] means _____

What is the domain?

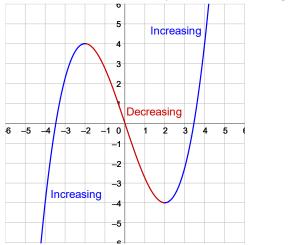

 $h(t) = \frac{4}{t}$

 $f(x) = \sqrt{5x - 8}$

Difference Quotient

$$\frac{f(x+h) - f(x)}{h}$$

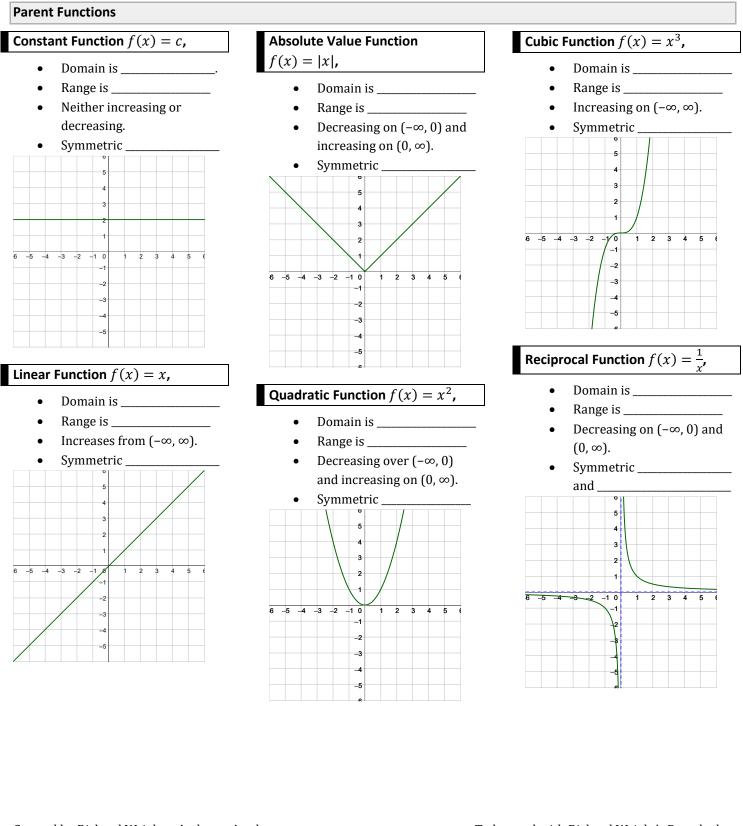
Simplify the difference quotient for f(x) = 2x + 1

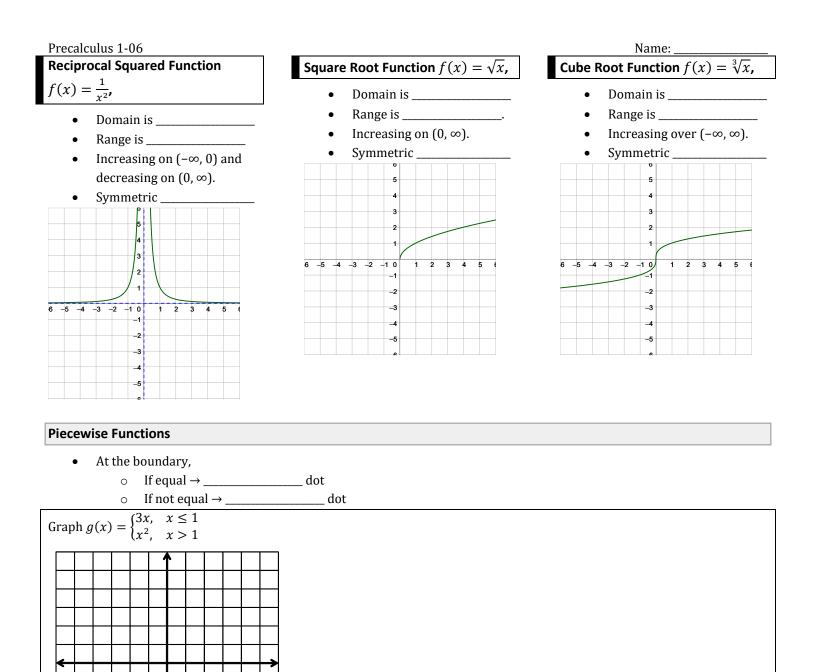

Zeros of a function

- *x*-value such that _____
- •
- To find, make f(x) = 0 and solve for x

Find the zeros of $f(x) = 2x^2 - 7x - 30$

Precalculus 1-05 Analyzing Graphs


- Increasing (______from left to right)
- Decreasing (_______from left to right)
- Constant (_____)
- Relative minimum (______point in area)
- Relative maximum (______point in area)



Rate of Change

• Average rate of change = _____between 2 points

1-06 Graphs of Parent Functions

1-07 Transformations of Functions

Translations (shift)

- _____the graph
- Horizontal
 - $\circ \quad g(x) = f(x-h)$
 - *h* shifts _____
- Vertical
 - $\circ \quad g(x) = f(x) + k$
 - *k* shifts _____

For f(x) = |x|, write a function with a vertical shift of 3 down and 2 right.

Reflections

• Vertical

$$\circ \quad g(x) = -f(x)$$

• Horizontal

$$\circ \quad \overline{g(x) = f(-x)}$$

Given $g(x) = 2 - (x + 5)^2$ Identify the parent function

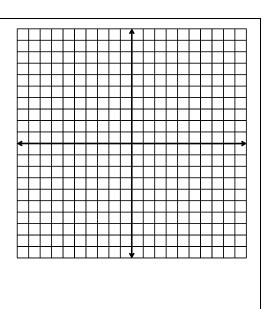
 \sim

Describe the transformations

Sketch the graph

Use functional notation to write *g* in terms of *f*

Dilations


- Stretch/Shrink
- Horizontal

$$\circ \quad g(x) = f(bx)$$

- Vertical
 - $\circ \quad g(x) = af(x)$
 - Stretch by _____

Put it all together

- g(x) = af(bx h) + k
- *a* = ______stretch
- $\frac{1}{b} =$ _____stretch
- *k* = ______shift up

Name: _____

Write the function for					

1-08 Combinations of Functions

Combining Functions (f+g)(x) = f(x) + g(x)Add • Subtract (f-g)(x) = f(x) - g(x)(fg)(x) = f(x)g(x)Multiply $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Divide If f(x) = x + 2 and g(x) = x - 2, find (f-g)(x)(f+g)(x) $\left(\frac{f}{a}\right)(x)$ (fg)(x)Composition $(f \circ g)(x) = f(g(x))$ •

• <i>g</i> into <i>f</i>			
If $f(x) = x^2$ and $g(x) = x - 1$, find			
$f \circ g$	$g \circ f$		
• Domain of $(f \circ g)$ is all x in domain of	such that	is in the domain of	·
• $x \to g \to f$			
If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x}$, find the domain of $f \circ g$			
$f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x}$, find the domain of $\int \frac{1}{y} \frac{1}{y}$			

Decompose

- Find f(x) and g(x) so that $(f \circ g)(x) = h(x)$
- Pick a portion to be g(x), then replace that with x to get f(x)

Decompose h(x) = 2|x+3|

Decompose
$$h(x) = \sqrt[3]{\frac{8-x}{5}}$$

1-09 Inverse Functions

Inverse functions	
 Switch Switch and Verify inverses by showing and 	
Verify that $f(x) = 7x - 4$ and $g(x) = \frac{x+4}{7}$ are inverses	
Graphs of inverses • Reflected over line	$\frac{4}{3} f^{-1}(x) = x$
One-to-one • A function is one-to-one if each y corresponds toone x. • Passes theline test • Inverse of a 1-to-1 is a	-4 -3 -2 -1 x0 1 2 3 4 x
Finding inverses	
1. $f(x)$ with y2. x and y3.for y4.If you did step 1, y with $f^{-1}(x)$ Find the inverse of $f(x) = \sqrt[3]{10 + x}$	
Find the inverse of $f(x) = x^2 - 2$, $x < 0$	

1-10 Mathematical Modeling

Mathematical modeling	
Find a function to	
Least squares regression ()
Gives theline	
• The amount of error is given by the	
1.0 0.8 0.4	0.0 -0.4 -0.8 -1.0
Number (in 1000s) of female USAF personnel, P,	, on active duty
Year20002001200220032004P66.867.671.573.573.8	
Find a model with $t = 0$ being 2000	
Real-Life Problems	
• Slope =	
Interpolation and Extrapolation	80 Interpolation
Interpolation	
odata	
oerror	
Extrapolation	50
oof data	
•error	Chirp in 15 s
Variations	
• Direct	o x ↑, y ↓
$\circ x \uparrow, y \uparrow$	• Joint
Inverse	• <i>a</i> =
A company found the demand for its product var	ries inversely as the price of the product. When the price is \$2.75, the demand
is 600 units. Write an equation.	